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Niobium(V) pentachloride: an efficient catalyst for C-, N-, O-,
and S-nucleophilic substitution reactions of benzylic alcohols
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Abstract—Benzylic alcohols undergo easy C-, N-, O-, and S- centered nucleophilic substitution reactions with a catalytic amount of
NbCl5.
� 2007 Elsevier Ltd. All rights reserved.
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Carbocations are one of the most important intermedi-
ates in C–C bond formation and are easily generated
from either alkyl halides,1 alcohols,2 or olefins.3 The
coupling of a carbocation with C-, O-, and N-atom
centered nucleophiles is a direct approach for the
construction of carbon–carbon, carbon–oxygen, and
carbon–nitrogen bonds. Alcohols are an attractive
source of electrophiles compared to alkyl halides from
atom-economical and synthetic points of view as they
are readily available and the only by product formed
in the reaction is water. Since the alcohol is a poor leav-
ing group, it has to be derivatized as an ester, mesylate,
tosylate, or halide for easy displacement.4 Thus, direct
nucleophilic substitution reactions of alcohols have
gained much attention and can generally be achieved
in the presence of stoichiometric amounts of Lewis acid5

or excess sulfuric acid or phosphoric acid.6 This trans-
formation can be achieved employing transition metals
such as Fe,7 Au,8 Bi,9 La, Sc, or Hf salts,10 InCl3,11

para-toluenesulfonic acid monohydrate or polymer-
supported para-toluenesulfonic acid.12 However, many
of these procedures require elevated temperatures, long
reaction times, or stoichiometric amounts of the
reagents. Thus, the introduction of a new and efficient
method for this transformation under more convenient
and general conditions would be welcome.

In continuation of our interest on the catalytic applica-
tions of NbCl5 as a Lewis acid catalyst for various
organic transformations,13 we herein disclose NbCl5
catalyzed arylation of aromatic compounds and the
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heteroatom centered nucleophilic substitution reactions
of benzylic alcohols (Scheme 1).

Recently, group Vb halides have become a subject of
interest due to their inherent Lewis acid properties. In
this group, TaCl5, a moisture sensitive solid has been
used as an efficient catalyst for several organic transfor-
mations.14 NbCl5, a stable solid, which is easy to handle
and soluble in many organic solvents, has also been well
explored as a Lewis acid in promoting various organic
transformations. Examples, where NbCl5 has been
utilized as an efficient Lewis acid catalyst, are an intra-
molecular oxidation reduction process,15 Diels–Alder
reaction,16 Sakurai reaction,17 Mannich type reaction,18

dealkylation of alkyl aryl ethers,19 homologation,20 ring
opening of epoxides,21 Mukaiyama aldol reactions,22

and allylation of aldehydes, imines23 and nucleophilic
additions to N-acyliminium ions24 and in complex
formation as Lewis acids.25
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Table 1. C-, N-, O-, and S-atom centered nucleophilic substitution reactions of benzylic alcohols catalyzed by NbCl5

Entry Aryl carbinol a Nucleophile Producta b Time (min) Yieldb(%)

1
OH

MeO

OH O

MeO
120 65

2
OH

MeO
NH4SCN

MeO

SCN 120 70

3
OH

MeO N
H

N
H

MeO
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4 Me

OH

OH

OH

Me

OH

OH
20 92

5 Me

OH

OH
N
H

N
H

Me

OH

20 92

6 Me

OH

OH

OMe

Me

OH

OMe

30 86

7 Me

OH

OH

NH4SCN Me

OH

SCN

30 88

8 Me

OH

OH

NaN3 Me

OH

N3

40 86

9
OH

OH

O
15 93

10
OH

OH
O

10 95

11
OH

OOH
OO

15 90

12
OH

NH4SCN

SCN

30 90

13
OH SH

S 60 95

14
OH OH OH 15 90

15
OH

N
H

N
H

15 92

16
OH OH

OH

OH

OH 15 86
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Table 1 (continued)

Entry Aryl carbinol a Nucleophile Producta b Time (min) Yieldb(%)

17 Me

OH

MeO

N
H

N
H

Me

MeO

10 92

18 Me

OH

MeO

OH

Me

MeO

OH 15 95

19 Me

OH

MeO
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Me

MeO
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20 Me
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O
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21 Me

OH
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22 Me
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N3

MeO

40 90

23 Me

OH
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24 Me

OH
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OH Me

O

NO2

No reaction

25 Me

OH

F
N
H

N
H

Me

F

No reaction

a Products were characterized by IR, 1H NMR, 13C NMR, and mass spectroscopy.
b Isolated and unoptimized yields.
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In continuation of our interest in the catalytic applica-
tions of NbCl5, we envisioned its use to promote nucleo-
philic substitution reactions of benzylic alcohols. Thus,
initially, we tested benzyl alcohol with allyl alcohol in
presence of 20 mol % of NbCl5 in anhydrous acetonitrile
and observed no change. When p-methoxybenzyl alco-
hol was subjected to similar reaction conditions, we
observed the complete consumption of the starting
material resulting in two products, characterized as
p-methoxybenzyl chloride and allyl p-methoxy benzyl
ether (Scheme 2).

To increase the yield of the product, various concent-
rations of the catalyst were employed. We found that
5 mol % of the catalyst was best in terms of yields and
duration for the nucleophilic substitution reaction.
Acetonitrile and nitromethane provided excellent
yields and proved to be the solvents of choice, whereas
dichloromethane, THF, and 1,4-dioxane afforded lower
yields.
Next, we investigated whether the diaryl carbinols could
react in a similar way even though the benzylic cation
would be more stabilized. We found that, the diaryl car-
binols reacted more rapidly than the aryl alkyl carbinols.
Also the aryl carbinols with electron-rich moieties
yielded the products in good yields (see Table 1).26 In
all cases, no chlorinated product was observed. No
eliminated side products were observed for a-substituted
benzylic alcohols. After studying the O-nucleophilic
substitutions with allylic alcohol and propargylic alco-
hol, aromatic compounds such as b-naphthol and resor-
cinal were examined. Gratifyingly, we observed only
C-arylation of the aromatic compounds at the electron-
rich site of the phenols. When anisole was used as the
nucleophile, substitution occurred at the para position
with respect to the methoxy moiety (entries 6 and
19).27 Indole (entries 3, 5, 15, and 17) also underwent
C-arylation. With the positive results obtained from
C- and O-nucleophilic substitution reactions, we proceeded
to N- and S-substitution reactions. The substitution
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reactions worked well with NH4SCN and NaN3 to give
the corresponding thiocyanides (entries 2, 7, 12, and 21)
and azides (entries 8, 22, and 23). The azido compounds
could be easily converted into amines under standard
conditions. Benzylic alcohols with electron withdrawing
groups such as fluoro or nitro did not react under the
present conditions (entries 24 and 25).

In conclusion, efficient nucleophilic substitution reac-
tions of diaryl carbinols and aryl alkyl carbinols cata-
lyzed by NbCl5 have been developed. The method
reported here is not only simple to operate but also
yields the products in short durations and in high yields
with water as the only by product. No heating12 and also
no prior derivatization7 of the benzylic alcohols were
required. Further investigations on the reaction mecha-
nism are currently in progress.
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C16H18O2Na: Calcd 265.1204; found, 265.1210.

27. p-Substitution occurred as confirmed by 1H NMR
spectroscopy.
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